1.1.1.3.1. Newton’s Second Law - The net force equals the rate of change of momentum
\[\vec F = {D {\vec V M} \over D t}\]
1.1.1.3.1.1. For a system:
\[\vec F = {D \over D t} \int_{SYS} \vec V dM\]
1.1.1.3.1.2. For a control volume (via Reynolds Transport Theorem):
\[\sum \vec F_{CV} = {\partial \over \partial t} \int_{CV} \vec V \rho dV + \int_{CS} \vec V \rho \vec V \cdot \hat n dA\]
1.1.1.3.2. LHS 1) Body forces - weight for an element \(\delta m\):
\[\delta \vec F = {D \over D t} \vec V \delta m = \delta m {D \over {Dt}} \vec V = \delta m \cdot \vec a\]
\[\delta \vec F_b = \delta m \cdot \vec g = \rho \delta x \delta y \delta z \cdot \vec g\]
1.1.1.3.3. LHS 2) Normal force and Tangential force
- Subscript notation:
-
- Sign convention:
Normal Stress is positive if it’s in the same direction as the outward normal vector
Shear Stress is positive if it’s in the same direction as the coordinate system w.r.t the outward normal vector (i.e. the right hand rule applies - thumb is the direction of the outward normal vector, the two fingers are the shear stresses)
1.1.1.3.3.1. Conservation of Momentum in x-direction:
\[\delta F_{sx} = \left( {\partial \sigma_{xx} \over \partial x} + {\partial \tau_{yx} \over \partial y} + {\partial \tau_{zx} \over \partial z} \right) \delta x \delta y \delta z\]
1.1.1.3.3.2. Conservation of Momentum in y-direction:
\[\delta F_{sy} = \left( {\partial \tau_{xy} \over \partial x} + {\partial \sigma_{yy} \over \partial y} + {\partial \tau_{zy} \over \partial z} \right) \delta x \delta y \delta z\]
1.1.1.3.3.3. Conservation of Momentum in z-direction:
\[\delta F_{sz} = \left( {\partial \tau_{xz} \over \partial x} + {\partial \tau_{yz} \over \partial y} + {\partial \sigma_{zz} \over \partial z} \right) \delta x \delta y \delta z\]
1.1.1.3.4. Equation of motion:
\[ \begin{align}\begin{aligned}\rho g_x + {\partial \sigma_{xx} \over \partial x} + {\partial \tau_{yx} \over \partial y} + {\partial \tau_{zx} \over \partial z} = \rho \left ( {\partial u \over \partial t} + u{\partial u \over \partial x} + v {\partial u \over \partial y} + w {\partial u \over \partial z} \right )\\\rho g_y + {\partial \tau_{xy} \over \partial x} + {\partial \sigma_{yy} \over \partial y} + {\partial \tau_{zy} \over \partial z} = \rho \left ( {\partial v \over \partial t} + u {\partial v \over \partial x} + v {\partial v \over \partial y} + w {\partial v \over \partial z} \right )\\\rho g_z + {\partial \tau_{xz} \over \partial x} + {\partial \tau_{yz} \over \partial y} + {\partial \sigma_{zz} \over \partial z} = \rho \left ( {\partial w \over \partial t} + u {\partial w \over \partial x} + v {\partial w \over \partial y} + w {\partial w \over \partial z} \right )\end{aligned}\end{align} \]
1.1.1.3.4.1. Three equations + continuity = Four equations
1.1.1.3.4.2. Unknowns: u, v, w and nine stresses = Twelve unknowns - need more information
1.1.1.3.4.3. Inviscid flow - no shearing stresses
\[\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -p\]
1.1.1.3.4.4. Euler’s Equation in the x-direction:
\[\rho g_x - {\partial p \over \partial x} = \rho \left ( {\partial u \over \partial t} + u {\partial u \over \partial x} + v {\partial u \over \partial y} + w {\partial u \over \partial z} \right )\]
1.1.1.3.4.5. Vector Notation:
\[\rho \vec g- \nabla p = \rho \left ( {\partial \vec V \over \partial t} + \vec V(\nabla \cdot \vec V) \right )\]