For compressible flow, pressure and velocity can be coupled with the Equation of State. But for incompressible flow, there is no obvious way to couple pressure and velocity.
So, take the divergence of the momentum equation and use the continuity equation to get a Poisson equation for pressure.
1.1. Poisson’s Equation in Continuous Domain
1.1.1. Navier Stokes Equations in Vector Notation
1.1.1.1. The Continuity Equation for an incompressible fluid:
Using the divergence operator (div):
\[\text{div}\ \mathbf{u} = 0\]
Or using the nabla operator \(\nabla\):
(1)\[\nabla \cdot \mathbf{u} = 0\]
1.1.1.2. The Momentum Equation for an incompressible fluid:
Using the gradient (grad) and Laplacian operators (\(\nabla^2\)):
\[{{\partial \mathbf{u}} \over {\partial t}} + \mathbf{u} \cdot \text{grad } \mathbf{u} =
{-{1 \over \rho} \text{grad } p} + {\nu \nabla^2 \mathbf{u}}\]
Using the nabla operator \(\nabla\) and Laplacian operators (\(\nabla^2\)) :
(2)\[{{\partial \mathbf{u}} \over {\partial t}} + \mathbf{u} \cdot \nabla \mathbf{u} =
{-{1 \over \rho} \nabla p} + {\nu \nabla^2 \mathbf{u}}\]
- Mass conservation (1) for \(\rho = \text{constant}\) is a kind of kinematic constraint to the momentum equation (2)
- PROBLEM: There is no obvious way to couple the velocity and pressure (for compressible fluids we would have an equation of state, which provides a relation between density and pressure)
1.1.1.3. Continuity Equation
\[{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0\]
1.1.1.4. Momentum Equations
\[{{\partial u} \over {\partial t}} + {u {{\partial u} \over {\partial x}}} + v {{\partial u} \over {\partial y}} =
-{1 \over \rho} {{\partial p} \over {\partial x}} +
\nu \left( {{\partial^2 u} \over {\partial x^2}} + {{\partial^2 u} \over {\partial y^2}} \right)\]
\[{{\partial v} \over {\partial t}} + {u {{\partial v} \over {\partial x}}} + v {{\partial v} \over {\partial y}} =
-{1 \over \rho} {{\partial p} \over {\partial y}} +
\nu \left( {{\partial^2 v} \over {\partial x^2}} + {{\partial^2 v} \over {\partial y^2}} \right)\]
1.1.2. The Divergence of the Momentum Equation in Partial Notation
Now take the divergence of the momentum equations, if \(\mathbf{M}\) is the “vector” of momentum equations, the divergence is:
\[\nabla \cdot \mathbf{M} = {\partial \over {\partial x}} M_x + {\partial \over {\partial y}} M_y\]
\[{\partial \over {\partial x}} M_x =
{\partial \over {\partial x}} {{\partial u} \over {\partial t}} +
{{\partial u} \over {\partial x}} {{\partial u} \over {\partial x}} + u {{\partial^2 u} \over {\partial x^2}} +
{{\partial v} \over {\partial x}} {{\partial u} \over {\partial y}} + v {{\partial^2 u} \over {\partial x \partial y}} =
-{1 \over \rho} {{\partial^2 p} \over {\partial x^2}} +
\nu \left( {{\partial^3 u} \over {\partial x^3}} + {{\partial^3 u} \over {\partial x \partial y^2}} \right)\]
\[{\partial \over {\partial y}} M_y =
{\partial \over {\partial y}} {{\partial v} \over {\partial t}} +
{{\partial u} \over {\partial y}} {{\partial v} \over {\partial x}} + u {{\partial^2 v} \over {\partial x \partial y}} +
{{\partial v} \over {\partial y}} {{\partial v} \over {\partial y}} + v {{\partial^2 y} \over {\partial y^2}} =
-{1 \over \rho} {{\partial^2 p} \over {\partial y^2}} +
\nu \left( {{\partial^3 v} \over {\partial x^2 \partial y}} + {{\partial^3 v} \over {\partial y^3}} \right)\]
1.1.2.1. Add the LHS
\[{\partial \over {\partial x}} M_x + {\partial \over {\partial y}} M_y =
{\partial \over {\partial t}} \left( {{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} \right) +
\left( {{\partial u} \over {\partial x}} \right)^2 +
{{\partial u} \over {\partial y}} {{\partial v} \over {\partial x}}+
u {{\partial^2 u} \over {\partial x^2}} +
u {{\partial^2 v} \over {\partial x \partial y}} +
{{\partial v} \over {\partial x}} {{\partial u} \over {\partial y}} +
\left( {{\partial v} \over {\partial y}} \right)^2 +
v {{\partial^2 u} \over {\partial x \partial y}} +
v {{\partial^2 v} \over {\partial y^2}} = RHS\]
Re-arrange:
\[{\partial \over {\partial x}} M_x + {\partial \over {\partial y}} M_y =
{\partial \over {\partial t}} \left( {{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} \right) +
\left( {{\partial u} \over {\partial x}} \right)^2 +
2 {{\partial u} \over {\partial y}} {{\partial v} \over {\partial x}}+
u {\partial \over {\partial x}} \left( {{\partial u} \over {\partial x}} +
{{\partial v} \over {\partial y}} \right) +
\left( {{\partial v} \over {\partial y}} \right)^2 +
v {\partial \over {\partial y}} \left( {{\partial u} \over {\partial x}} +
{{\partial v} \over {\partial y}} \right) = RHS\]
Apply Continuity, so \(\nabla \cdot \mathbf{u} = 0\). Hence:
\[{\partial \over {\partial x}} M_x + {\partial \over {\partial y}} M_y =
\left( {{\partial u} \over {\partial x}} \right)^2 +
2 {{\partial u} \over {\partial y}} {{\partial v} \over {\partial x}}+
\left( {{\partial v} \over {\partial y}} \right)^2 = RHS\]
1.1.2.2. Add the RHS
\[-{1 \over \rho} \left( {{\partial^2 p} \over {\partial x^2}} + {{\partial^2 p} \over {\partial y^2}} \right)+
\nu \left( {{\partial^3 u} \over {\partial x^3}} + {{\partial^3 u} \over {\partial x \partial y^2}} +
{{\partial^3 v} \over {\partial x^2 \partial y}} + {{\partial^3 v} \over {\partial y^3}} \right) = LHS\]
Re-arrange:
\[-{1 \over \rho} \left( {{\partial^2 p} \over {\partial x^2}} + {{\partial^2 p} \over {\partial y^2}} \right)+
\nu \left( {{\partial^2} \over {\partial x^2}} \left( {{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} \right) +
{{\partial^2} \over {\partial y^2}} \left( {{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} \right) \right) = LHS\]
Apply Continuity, so \(\nabla \cdot \mathbf{u} = 0\). Hence:
\[-{1 \over \rho} \left( {{\partial^2 p} \over {\partial x^2}} + {{\partial^2 p} \over {\partial y^2}} \right) = LHS\]
1.1.3. The Poisson Equation in Vector Notation
1.1.3.1. Equate LHS and RHS
\[-{1 \over \rho} \left( {{\partial^2 p} \over {\partial x^2}} + {{\partial^2 p} \over {\partial y^2}} \right) =
\left( {{\partial u} \over {\partial x}} \right)^2 +
2 {{\partial u} \over {\partial y}} {{\partial v} \over {\partial x}}+
\left( {{\partial v} \over {\partial y}} \right)^2\]
1.2. Poisson’s Equation in Numerical Domain
We have shown that the Poisson’s Equation is valid in the continuous domain, but in the numerical domain, we use discretisation
1.2.4. The Poisson Equation in Vector Notation
Poisson Equation for \(p\) at time \(n+1\) and forcing \(\nabla \cdot \mathbf{u}^{n+1} = 0\)
\[\nabla^2 p^{n+1} = \rho {{\nabla \cdot \mathbf{u}^n} \over {\Delta t}}-
\rho \nabla \cdot (\mathbf{u}^n \cdot \nabla \mathbf{u}^n)+
\mu \nabla^2 (\nabla \cdot \mathbf{u}^n)\]
- In the numerical domain the velocity field we are producing with the Navier Stokes equations is not completely divergence free
- Think of the velocity obtained from the Navier Stokes as being at an intermediate step \(\mathbf{u}^{n+1/2}\)
- And \(\nabla \cdot \mathbf{u}^{n+1/2} \ne 0\)
- We need \(p^{n+1}\) so that continuity is satisfied