2. Numerical Schemes 2¶
2.1. Definition of Consistency¶
- Consistency is a condition on the numerical scheme, i.e.
- The scheme must tend to the differential equation when the step in time and space tend to zero.
2.2. Definition of Stability¶
- Stability is a condition on the numerical solution, i.e.
- All errors must remain bounded when the iteration process progresses
- For finite values of \(\Delta t\) and \(\Delta x\), the error has to remain bounded when the number of time steps \(n\) tends to infinity.
- If the error:
\[\bar{\epsilon}_i^n = u_i^n-\bar{u}_i^n\]
where:
\(\qquad u_i^n\) = computed solution
\(\qquad \bar{u}_i^n\) = discretised solution
- Then the stability condition is:
\[\lim_{n \to \infty} \left \vert \bar{\epsilon}_i^n \right \vert \le \kappa \quad \text{ at fixed } \Delta t\]
- NOTE:
- The stability condition is a requirement on the numerical scheme only (does not require any condition on the differential equation)
- Stability does not ensure that the error will not become unacceptably large at intermediate timesteps \(t^n = n \Delta t\) (while remaining bounded)
- A more general definition of stability later!
2.3. Definition of Convergence¶
- Convergence is a condition on the numerical solution
- The numerical solution must tend to the exact solution of the mathematical model, when steps in \(t\) and \(x\) tend to zero (i.e. when the mesh is refined).
- If the error:
\[\tilde{\epsilon}_i^n = u_i^n-\tilde{u}_i^n\]
where:
\(\qquad u_i^n\) = computed solution
\(\qquad \tilde{u}_i^n = \tilde{u}_i^n(i\Delta x, n \Delta t)\) = solution of differential equation
- Convergence condition:
\[\lim_{\Delta x \to 0, \Delta t \to 0} \left \vert \tilde{\epsilon}_i^n \right \vert = 0\]
2.4. Equivalence Theorem of Lax¶
- For a well-posed IVP and a consistent discretisation scheme, stability is the necessary and sufficient condition for convergence
2.5. Consistency and the modified differential equation¶
- A consistent scheme is one in which the truncation error tends to zero for \(\Delta t\), \(\Delta x \rightarrow 0\)
- e.g. CD in space and FD in time for linear convection:
(1)\[{{u_i^{n+1} - u_i^n} \over {\Delta t}} + c {{u_{i+1}^n - u_{i-1}^n} \over {2 \Delta x}}=0\]
- Taylor expansions:
(2)\[u_i^{n+1} = u_i^n + \Delta t \left . {\partial u \over \partial t} \right \vert_i^n + {\Delta t^2 \over 2} \left . {\partial^2 u \over \partial t^2} \right \vert_i^n + {\Delta t^3 \over 6} \left . {\partial^3 u \over \partial t^3} \right \vert_i^n + {\Delta t^4 \over 24} \left . {\partial^4 u \over \partial t^4} \right \vert_i^n + {\Delta t^5 \over 120} \left . {\partial^5 u \over \partial t^5} \right \vert_i^n\]
(3)\[u_{i+1}^n = u_i^n + \Delta x \left . {\partial u \over \partial x} \right \vert_i^n + {\Delta x^2 \over 2} \left . {\partial^2 u \over \partial x^2} \right \vert_i^n + {\Delta x^3 \over 6} \left . {\partial^3 u \over \partial x^3} \right \vert_i^n + {\Delta x^4 \over 24} \left . {\partial^4 u \over \partial x^4} \right \vert_i^n + {\Delta x^5 \over 120} \left . {\partial^5 u \over \partial x^5} \right \vert_i^n\]
(4)\[u_{i-1}^n = u_i^n - \Delta x \left . {\partial u \over \partial x} \right \vert_i^n + {\Delta x^2 \over 2} \left . {\partial^2 u \over \partial x^2} \right \vert_i^n - {\Delta x^3 \over 6} \left . {\partial^3 u \over \partial x^3} \right \vert_i^n + {\Delta x^4 \over 24} \left . {\partial^4 u \over \partial x^4} \right \vert_i^n - {\Delta x^5 \over 120} \left . {\partial^5 u \over \partial x^5} \right \vert_i^n\]
- Re-arranging Equation (2):
(5)\[{{u_i^{n+1} - u_i^n} \over {\Delta t}} = \left . {\partial u \over \partial t} \right \vert_i^n + {\Delta t \over 2} \left . {\partial^2 u \over \partial t^2} \right \vert_i^n + O(\Delta t^2)\]
(6)\[{c \over {2 \Delta x}} {(u_{i+1}^n - u_{i-1}^n)} = c \left . {\partial u \over \partial x} \right \vert_i^n + c {\Delta x^2 \over 6} \left . {\partial^3 u \over \partial x^3} \right \vert_i^n + O(\Delta x^4)\]
- Including the truncation error in (1), defined as the difference between the numerical approximation and the differential equation:
\[{{u_i^{n+1} - u_i^n} \over {\Delta t}} + c {{u_{i+1}^n - u_{i-1}^n} \over {2 \Delta x}} -
\left ( \left . {\partial u \over \partial t} \right \vert_i^n +
\left . c {\partial u \over \partial x} \right \vert_i^n \right ) =
{\Delta t \over 2} \left . {\partial^2 u \over \partial t^2} \right \vert_i^n +
c {\Delta x^2 \over 6} \left . {\partial^3 u \over \partial x^3} \right \vert_i^n +
O(\Delta t^2) + O(\Delta x^4)\]
- The RHS of the above equation is the truncation error
\[\epsilon_T = {\Delta t \over 2} \left . {\partial^2 u \over \partial t^2} \right \vert_i^n +
c {\Delta x^2 \over 6} \left . {\partial^3 u \over \partial x^3} \right \vert_i^n +
O(\Delta t^2) + O(\Delta x^4)\]
- The scheme is consistent because when \(\Delta t\), \(\Delta x \rightarrow 0\), \(\epsilon_T \rightarrow 0\)