4.1.4. ODEs and PDEs¶
4.1.4.1. How to decide if a PDE is elliptic, hyperbolic or parabolic?¶
or for a \(n \times n\) system:
The type depends on the determinant:
\(b^2-4ac>0 \longrightarrow\) all n eigenvalues are real \(\longrightarrow\) Hyperbolic
\(b^2-4ac=0 \longrightarrow\) all n eigenvalues are real and identical \(\longrightarrow\) Parabolic
\(b^2-4ac<0 \longrightarrow\) all n eigenvalues are complex \(\longrightarrow\) Elliptic
4.1.4.2. What common flow conditions are hyperbolic, elliptic and parabolic?¶
Hyperbolic \(\longrightarrow\) (Steady \(\lor\) Unsteady) \(\land\) Compressible \(\land\) Inviscid \(\land\) Supersonic
Parabolic \(\longrightarrow\) (Compressible \(\lor\) Incompressible) \(\land\) Viscous Boundary Layer
Elliptic \(\longrightarrow\) (Compressible \(\lor\) Incompressible) \(\land\) Inviscid \(\land\) Steady \(\land\) Subsonic
Mixed (most cases are mixed) \(\longrightarrow\) There is a parabolic boundary layer, but parts of the domain away from the boundary are hyperbolic or elliptic
4.1.4.3. What are some examples of hyperbolic, elliptic and parabolic PDEs?¶
Wave Equation \(\longrightarrow\) Hyperbolic \(\longrightarrow\) \({\partial u \over \partial t} + a {{\partial u} \over {\partial x}}=0\)
Laplace Equation \(\longrightarrow\) Elliptic \(\longrightarrow\) \({\partial^2 u \over \partial x^2} + {{\partial^2 u} \over {\partial y^2}}=0\)
Poisson Equation \(\longrightarrow\) Elliptic \(\longrightarrow\) \({\partial^2 p \over \partial x^2} + {{\partial^2 p} \over {\partial y^2}}=f(u)\)
Stokes Flow \(\longrightarrow\) Parabolic \(\longrightarrow\) \({\partial p \over \partial x} = \mu {\partial^2 u \over \partial x^2}\)
Heat Conduction \(\longrightarrow\) Parabolic \(\longrightarrow\) \({\partial T \over \partial t} = \alpha {\partial^2 T \over \partial x^2}\)
Boundary Layer \(\longrightarrow\) Parabolic \(\longrightarrow\) \(\rho \left( {u {\partial u \over \partial x} + v {\partial u \over \partial y}} \right) = \mu {\partial^2 u \over \partial y^2}\)