4.2.1. Linear Algebra for CFD Applications¶
4.2.1.1. 2D Vector Notation¶
Divergence of a vector gives a scalar (via the scalar product)
Divergence of a scalar doesn’t exist
Gradient of a vector gives a vector
Gradient of a scalar gives a scalar
4.2.1.1.1. Continuity Equation¶
The 2D Continuity Equation:
Expression 1 |
Expression 2 |
Component 1a |
Component 1b |
Operation |
Expansion |
---|---|---|---|---|---|
\(\nabla \cdot \mathbf{u}(x,y)\) |
\(\text{div } \mathbf{u}\) |
\(\begin{bmatrix} \mathbf{i} \ {\partial \over {\partial x}} \\ \mathbf{j} \ {\partial \over {\partial y}} \end{bmatrix}\) |
\(\begin{bmatrix} {u} \\ {v} \end{bmatrix}\) |
Scalar Product |
\({{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}}\) |
4.2.1.1.2. Momentum Equation¶
The 2D Momentum Equation:
Expression 1 |
Expression 2 |
Component 1a |
Component 1b |
Operation |
Expansion-x |
Expansion-y |
---|---|---|---|---|---|---|
\({\partial \mathbf{u}(x,y)} \over t\) |
N/A |
\({\partial \over {\partial t}}\) |
\(u\) or \(v\) |
Time Derivative |
\({\partial u} \over {\partial t}\) |
\({\partial v} \over {\partial t}\) |
\(\nabla \mathbf{u}(x,y)\) |
\(\text{grad } \mathbf{u}\) |
\(\begin{bmatrix} \mathbf{i} \ {\partial \over {\partial x}} \\ \mathbf{j} \ {\partial \over {\partial y}} \end{bmatrix}\) |
\({u}\) or \({v}\) |
Vector Gradient |
\(\begin{bmatrix} {{\partial u} \over {\partial x}} \mathbf{i} \\ {{\partial u} \over {\partial y}} \mathbf{j} \end{bmatrix}\) |
\(\begin{bmatrix} {{\partial v} \over {\partial x}} \mathbf{i} \\ {{\partial v} \over {\partial y}} \mathbf{j} \end{bmatrix}\) |
\(\mathbf{u} \cdot \nabla \mathbf{u}(x,y)\) |
\(\mathbf{u} \cdot \text{grad } \mathbf{u}\) |
\(\begin{bmatrix} {u} \\ {v} \end{bmatrix}\) |
\(\begin{bmatrix} {{\partial u} \over {\partial x}} \mathbf{i} \\ {{\partial u} \over {\partial y}} \mathbf{j} \end{bmatrix}\) or \(\begin{bmatrix} {{\partial v} \over {\partial x}} \mathbf{i} \\ {{\partial v} \over {\partial y}} \mathbf{j} \end{bmatrix}\) |
Scalar Product |
\(u{{\partial u} \over {\partial x}} + v {{\partial u} \over {\partial y}}\) |
\(u{{\partial v} \over {\partial x}} + v {{\partial v} \over {\partial y}}\) |
\(\nabla p(x)\) or \(\nabla p(y)\) |
\(\text{grad } p\) |
\({\partial \over {\partial x}}\) or \({\partial \over {\partial y}}\) |
\({p}\) |
Scalar Gradient |
\({{\partial p} \over {\partial x}}\) |
\({{\partial p} \over {\partial y}}\) |
\(\nabla^2 \mathbf{u}(x,y)\) |
\(\nabla \cdot \nabla \mathbf{u}(x,y)\) |
\(\begin{bmatrix} \mathbf{i} {\partial \over {\partial x}} \\ \mathbf{j} {\partial \over {\partial y}} \end{bmatrix}\) |
\(\begin{bmatrix} {{\partial u} \over {\partial x}} \mathbf{i} \\ {{\partial u} \over {\partial y}} \mathbf{j} \end{bmatrix}\) or \(\begin{bmatrix} {{\partial v} \over {\partial x}} \mathbf{i} \\ {{\partial v} \over {\partial y}} \mathbf{j} \end{bmatrix}\) |
Laplacian |
\({{\partial^2 u} \over {\partial x^2}} + {{\partial^2 u} \over {\partial y^2}}\) |
\({{\partial^2 v} \over {\partial x^2}} + {{\partial^2 v} \over {\partial y^2}}\) |