4.2.1. Linear Algebra for CFD Applications

4.2.1.1. 2D Vector Notation

  • Divergence of a vector gives a scalar (via the scalar product)

  • Divergence of a scalar doesn’t exist

  • Gradient of a vector gives a vector

  • Gradient of a scalar gives a scalar

4.2.1.1.1. Continuity Equation

The 2D Continuity Equation:


(1)\[\nabla \cdot \mathbf{u} = 0\]


Expression 1

Expression 2

Component 1a

Component 1b

Operation

Expansion

\(\nabla \cdot \mathbf{u}(x,y)\)

\(\text{div } \mathbf{u}\)

\(\begin{bmatrix} \mathbf{i} \ {\partial \over {\partial x}} \\ \mathbf{j} \ {\partial \over {\partial y}} \end{bmatrix}\)

\(\begin{bmatrix} {u} \\ {v} \end{bmatrix}\)

Scalar Product

\({{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}}\)

4.2.1.1.2. Momentum Equation

The 2D Momentum Equation:


(2)\[{{\partial \mathbf{u}} \over {\partial t}} + \mathbf{u} \cdot \nabla \mathbf{u} = {-{1 \over \rho} \nabla p} + {\nu \nabla^2 \mathbf{u}}\]


Expression 1

Expression 2

Component 1a

Component 1b

Operation

Expansion-x

Expansion-y

\({\partial \mathbf{u}(x,y)} \over t\)

N/A

\({\partial \over {\partial t}}\)

\(u\) or \(v\)

Time Derivative

\({\partial u} \over {\partial t}\)

\({\partial v} \over {\partial t}\)

\(\nabla \mathbf{u}(x,y)\)

\(\text{grad } \mathbf{u}\)

\(\begin{bmatrix} \mathbf{i} \ {\partial \over {\partial x}} \\ \mathbf{j} \ {\partial \over {\partial y}} \end{bmatrix}\)

\({u}\) or \({v}\)

Vector Gradient

\(\begin{bmatrix} {{\partial u} \over {\partial x}} \mathbf{i} \\ {{\partial u} \over {\partial y}} \mathbf{j} \end{bmatrix}\)

\(\begin{bmatrix} {{\partial v} \over {\partial x}} \mathbf{i} \\ {{\partial v} \over {\partial y}} \mathbf{j} \end{bmatrix}\)

\(\mathbf{u} \cdot \nabla \mathbf{u}(x,y)\)

\(\mathbf{u} \cdot \text{grad } \mathbf{u}\)

\(\begin{bmatrix} {u} \\ {v} \end{bmatrix}\)

\(\begin{bmatrix} {{\partial u} \over {\partial x}} \mathbf{i} \\ {{\partial u} \over {\partial y}} \mathbf{j} \end{bmatrix}\) or \(\begin{bmatrix} {{\partial v} \over {\partial x}} \mathbf{i} \\ {{\partial v} \over {\partial y}} \mathbf{j} \end{bmatrix}\)

Scalar Product

\(u{{\partial u} \over {\partial x}} + v {{\partial u} \over {\partial y}}\)

\(u{{\partial v} \over {\partial x}} + v {{\partial v} \over {\partial y}}\)

\(\nabla p(x)\) or \(\nabla p(y)\)

\(\text{grad } p\)

\({\partial \over {\partial x}}\) or \({\partial \over {\partial y}}\)

\({p}\)

Scalar Gradient

\({{\partial p} \over {\partial x}}\)

\({{\partial p} \over {\partial y}}\)

\(\nabla^2 \mathbf{u}(x,y)\)

\(\nabla \cdot \nabla \mathbf{u}(x,y)\)

\(\begin{bmatrix} \mathbf{i} {\partial \over {\partial x}} \\ \mathbf{j} {\partial \over {\partial y}} \end{bmatrix}\)

\(\begin{bmatrix} {{\partial u} \over {\partial x}} \mathbf{i} \\ {{\partial u} \over {\partial y}} \mathbf{j} \end{bmatrix}\) or \(\begin{bmatrix} {{\partial v} \over {\partial x}} \mathbf{i} \\ {{\partial v} \over {\partial y}} \mathbf{j} \end{bmatrix}\)

Laplacian

\({{\partial^2 u} \over {\partial x^2}} + {{\partial^2 u} \over {\partial y^2}}\)

\({{\partial^2 v} \over {\partial x^2}} + {{\partial^2 v} \over {\partial y^2}}\)